EVS - Repetitorium

Gliederung der Klausur

Aufgabe 1 - 40 Pkt. ~ 45 min
Aufgabe 2 - 20 Pkt. ~ 22.5 min
Aufgabe 3 - n

Hilfsmittel:

Bücher, Script, Formelsammlung, Schreibzeug, Taschenrechner
verboten.

Übungsauf. + Leg.

Begriffe:

Nominalwert: geeignet gemindeter Wert einer Größe zur
Bezeichnung oder Identifizierung eines Elements,
einer Gruppe, einer Einrichtung

Grenzwert: der in einer Festlegung enthaltene größte oder
kleinste zulässige Wert einer Größe

Bemessungswert: Ein für eine vorgegebene betriebsbedingten
geltender Wert einer Größe der im Mf.
vom Hersteller für ein Element, eine Gruppe
oder Einrichtung festgelegt wird

Beispiele - Mittelspannung netz 110 kV
Ur.Tral = 12 kV

- Synchronmotor 70 = 3000 min⁻¹ = Nr

da Drehzahl ausschlaggebend für Konstruktion u. Bemessung

Quelle: DIN 40200

Verwendung von EVS

Bemessungswert: Stromfluss

Bemessungsspannung / Außenelementspannung

Normspannung
Leitungen:
einphasig \[P(t) = U(t) \cdot i(t) \]
mit \[U = \frac{1}{\sqrt{2}} \]
und \[I = \frac{1}{\sqrt{2}} \]

 Folgt nach längerer Ableitung
\[P = UI \cos (\varphi_U - \varphi_I) \]
\[Q = UI \sin (\varphi_U - \varphi_I) \]
\[S = U \cdot I^* = P + j \cdot Q \]

dreiphasig
\[S = 3 \cdot U_R \cdot I_R^* \]
\[= \sqrt{3} (\sqrt{3} U_R) I_R^* \]

Transformator
Dreiphasentransformator
- 3 Phasen (3 Wicklungen)
- Übersetzungsverhältnis Komplex
 → Schaltgruppe berücksichtigen
Z. B. \[Y_d \leftarrow U_S \text{Seite gilt d, } \Omega_S \text{Seite } 5 \times 30^\circ = 150^\circ \text{ nach } \]
\[\Omega_S \text{ Stern } \leftarrow U_S \text{ Dreieck } \]
Übersetzungsverhältnis + Wicklungsverhältnis
 → Bild Script 3.8
Ersatzschaltbild: (T1)

\[U_1' \downarrow 2X_h \quad 2L_{Fe} \quad X_h \quad 2L_{Fe} \quad \sqrt{U_2'} \]

mit \(U_2' = \frac{U_2}{\bar{u}} \quad I_2' = \frac{I_2}{\bar{u}} \)

\[Z' = \frac{u^2 Z}{\bar{u}} \]

in den Aufgaben i.d.R. Übertragen weglassen.

ESB-Elemente

\[X_0, R_{ca} \text{ aus } KS \]

\[R_{ca} = \frac{R_{ca}}{U_0} \left(\frac{U_{kn}}{5V} \right)^2 \quad U_{kr} = \frac{U_{kn}}{U_{kn}^2} \Rightarrow X_0 \approx \left(\frac{k_{kn}}{5V} \right)^2 \]

falls \(R_{ca} < X_0 \)

\[\text{falls } R_{Fe} \gg X_h \]

\[R_{Fe}, X_h \text{ aus } LL \]

\[R_{Fe} \approx \frac{U_{kr}^2}{R_{Fe}} \quad X_h \approx \frac{1}{\sqrt{3 \frac{U_{kr}^2}{R_{Fe}^2} - \frac{1}{R_{Fe}^2}}} \approx \frac{U_{kn}}{\sqrt{3} \cdot I_{01}} \]

Stellexztransformator

\[L \rightarrow \text{variables Übersetzungsverhältnis} \]

\[\bar{u} = U_{kr} \left(1 + \Delta \right) \]

\[L \rightarrow \text{relative Abweichung} \]

Zitierungen:

Zitierungskenngroßen

\(R' \rightarrow \text{Widerstandsbelag} \)

\(L' \rightarrow \text{Induktivitätsbelag} \)

\(C' \rightarrow \text{Kapazitätsbelag} \)

\(G' \rightarrow \text{Ableitbelag} \)
Ausbreitungs-Koeffizient
\[\lambda = \alpha + j\beta = \sqrt{R'(1 + j\omega L')} (G' + j\omega C') \]

Dämpfung Phasen-Koeff.
\[\beta = \omega \sqrt{L'C'} \]

Wellenwiderstand verlustlos
\[Z_W = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} \approx \sqrt{\frac{1}{c'}} \]

Leitungsgleichung (verlustbehaftet)
\[\frac{I_1}{Z_1} \frac{Z_2}{I_2} \frac{Z_3}{I_3} \]
\[\begin{pmatrix} \cosh(yL) & -Z_W \sinh(yL) \frac{U_2}{I_2} \\ \frac{1}{Z_W} \sinh(yL) & -\cosh(yL) \end{pmatrix} \]
\[= \begin{pmatrix} \frac{U_1}{I_1} \end{pmatrix} \]

Leitungsgleichung (verlustlos)
\[\frac{I_1}{Z_1} \frac{Z_2}{I_2} \frac{Z_3}{I_3} \]
\[U_1 \]
\[\begin{pmatrix} Y_q = \frac{1}{Z_W} \tanh(\frac{yL}{2}) \\ Y_g \end{pmatrix} \]
\[Z_L = jZ_W \sin(\beta L) \]
\[Y_q = j \frac{1}{Z_W} \tan(\frac{\beta L}{2}) \]

Naturleiche Leistung
Abgegebene Leistung bei Abschluss mit \(Z_W \)
\[S_2 = P_{nat} = 3 \frac{U_2^2}{Z_W} \] (verlustbehaftet)
\[P_{nat} = \frac{3 U_2^2}{Z_W} = \frac{U_0^2}{Z_W} \] (verlustlos)
Belastungsfalle (verlustlos)

\[R_L = Z_L \Rightarrow U_2 = U_1 \quad I_2 = I_1 \]
\[P_1 = P_2 = P_{nat} ; \quad Q_1 = Q_2 = 0 \]

\[R_L > Z_L \text{ (Scherelast)} \]
\[Q_1 < 0 \]
\[U_2 > U_1 \quad I_2 < I_1 \]
\[P_1 = P_2 < P_{nat} \]

\[R_L < Z_L \text{ (Starkeelast)} \]
\[\Rightarrow Q_1 > 0 \]
\[U_2 < U_1 \quad I_2 > I_1 \]
\[P_1 = P_2 > P_{nat} \]

\(\Rightarrow \text{ Leitung selbst benötigt Blindleistung} \)

Kompensation

\[S_2 > P_{nat} \text{ (Langskompensation)} \]
\[\beta = \beta \sqrt{1 - k_q} \quad k_0: \text{kompensationsgrad} \]
\[da \ c = (1 - k_0) L \]
\[\Rightarrow \tilde{Z}_L = Z_L \sqrt{1 - k_q} \Rightarrow \tilde{P}_{nat} = \frac{P_{nat}}{\sqrt{1 - k_q}} \]
\[\Rightarrow \tilde{Z}_L \Rightarrow Z_L \Rightarrow P_{nat} \]

\[S_2 < P_{nat} \text{ (Querkompensation)} \]
\[\tilde{c} = (1 - k_0) \tilde{c}' \]
\[\tilde{\beta} = \beta \sqrt{1 - k_q} \quad da \ c' = (1 - k_q) c' \]
\[\Rightarrow \tilde{Z}_L = \frac{Z_L}{\sqrt{1 - k_q}} ; \quad \tilde{P}_{nat} = P_{nat} \sqrt{1 - k_q} \]
\[\Rightarrow \tilde{c}' \Rightarrow \tilde{Z}_L \Rightarrow \tilde{P}_{nat} \]
Berechnung von L' und C'

geometrische Anordnung der Leiter

\[d = \sqrt[3]{d_1^2 d_2^2 d_3^2} \quad n = \text{Anzahl Leiter} \]

\[C' = \frac{2 \pi \epsilon_0}{\ln \frac{d}{s_b}} \quad L' = \frac{2 \pi \ln \frac{d}{s_b} e^{-\frac{1}{4n}}}{2} \]

Synchrongenerator

Turbogenerator

Schenkelgenerator

\[X_q = X_d \]

Ersatzschaltbild Turbogenerator

\[U = E - j X_d I \]

\[U = \text{Generatorklemmenspannung} \]

Phasenspannung

Bsp.: \(U = U \quad E = E e^{j \varphi} = \text{Polradwinkel} \quad \varphi = \text{Winkel zw. Drehfeld des Rotors und Ständer} \quad \]

\[X_d = X_d \quad X_r = X_d \frac{u_1^2}{3 I_r} = X_d \frac{u_1^2}{S_r} \]

Bemessungsreaktanz

\(X_d \): bezogene synchrone Reaktanz analog zu \(u_1 \).
Zeigerdiagramm ohne Belastung

\[P = 3 \frac{E_u}{X_d} \sin \gamma = S_e \] (Scheinleistung v. Generator)

Betriebsdiagramm des Turbogenerators

- S_Gr
- X_d = Stabilitätsgrenze
- \cos \gamma

max. Turbinenleistung

max. Erwärmung d. Generator

Bemessungsleistung

\[\gamma \text{ nie mehr als } 90^\circ \]

möglicher Betriebspunkt

Verbraucher

Statisches Verbrauchermodell

- Konstante Leistung
 \[P + j Q = 3 U I^* \]
 PQ - Knoten bei Lastfluss
- Konstante Phasenverspannung
- Konstante Impedanz
 \[Z = \frac{U}{I} = \frac{P + j Q}{3|I|^2} \] ausged. für Lastfälle
Kurzschlussmodell Asymmetrie Motors

\[
Z_n = \left(\frac{I_{en}}{I_{wm}} \right)^{-1} \frac{U_{en}}{S_{wm}}
\]

Lastflussberechnung

\[
\bar{I} = \sum_{k} \bar{U}_k \bar{Z}_n
\]

Knotenadmittanzmatrix aus \(\bar{I} \) - ESB

Nebendiagonalelemente

\[
Y_{n,k} = -\sum_{m \neq n} Y_{kn}
\]

Längsadmittanzen zu Knoten i und k

Hauptideagonalelemente

\[
Y_{n,n} = \frac{1}{S_n} (Y_{q,n} + Y_{L,n})
\]

Bsp.:

\[
\bar{Y}_N = \begin{pmatrix}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{pmatrix}
\]

\[
Y_{11} = Y_{q11} + Y_{q22} + Y_{L11} + Y_{L22}
\]

\[
Y_{12} = -Y_{q12}
\]
Lastflussformel

\[\bar{I} = \bar{G} \cdot \bar{U} \]

\[\Rightarrow \bar{S} = 3 \cdot \text{diag}(\bar{U}) \cdot \bar{Y}^* \cdot \bar{U}^* \]

\rightarrow Zustandsgröße für jeden Knoten
\[P_i, Q_i, U_i, V_i \]

Knotentypen

<table>
<thead>
<tr>
<th>Knoten</th>
<th>Bekannt</th>
<th>gesucht</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P_i, U_i</td>
<td>Q_i, V_i</td>
</tr>
<tr>
<td>V</td>
<td>P_i, Q_i</td>
<td>U_i, V_i</td>
</tr>
<tr>
<td>P Q</td>
<td>U_i, V_i</td>
<td>P_i, Q_i</td>
</tr>
<tr>
<td>SLACK</td>
<td>U_i, V_i</td>
<td>P_i, Q_i</td>
</tr>
</tbody>
</table>

\[= 0 \]

Lösungsverfahren
- Newton-Raphson
- schneller entkoppelter Lastfluss

Wirklastflussberechnung

Voraussetzung:
- Kleine Verluste
- Kleine Spannungswinkeldifferenzen
- Einheitliche Knotenspannungen
- \[U_i = \frac{|E_i|}{\sqrt{3}} \]

\[\bar{P} = \bar{U}_0^T \cdot \bar{B}^{-1} \cdot \bar{V} \]

Bezeichnet aus \[Q \] mit \[B_{ii} = \sum_{q} |Y_{iq}| \]

\[B_{ij} = -|Y_{ij}| \]

9
Kurzschlussstromberechnung

Zeitlich veränderter KS-Strom
→ Verhältnung durch Zeiteinmale

\[I_k \rightarrow \frac{I_k'}{I_k} \]

transienter Bereich
stationärer Bereich

⇒ näherungswise Berechnung v. \(I_k'' \) mittels komplexer Wechselstromleistung
- Anfangs KS-Wechselstromleistung
 \[S_k'' = \sqrt{3} U_n I_k'' \]
- \(\text{Aktiv} \) \(V0E0102 \) Vereinfachungen:
 - Vernachlässigung von Ausgängen
 - \(\text{In} \) ohne Anteilen
 - falls \(\frac{R_k}{X_k} \) dasselbe K5-Induktion < 0,3
 - Vernachlässigung nicht ohmscher Verbraucher
 - Einheitliche Kurzschlussnennwerte \(E'' = 0.5 \frac{U_n}{\sqrt{3}} \)
- Asynchronmotoren, falls Betrag \(\leq 5\%\)
 Berechnungsverfahren:
 - Superposition
 - Überlagerung: Zustand vor Fehlerentwicklung
 Änderung des Zustands = Zustand nach Fehlerentwicklung
Superposition: $U_i = U_v - \Delta U_i$

an Fehlerstelle: $U_F = 0 \Rightarrow U_{F} = \Delta U_F$

$I_k = I_k^V - \Delta I_k$

- Ersatzspannungsquellenverfahren

\Rightarrow Vernachlässigung des V-Systems

$\Rightarrow U_F^V = C \frac{U_n}{\beta}$ mit $C = \left\{ \begin{array}{ll} 1, & \text{falls } U_n > 1 \text{ kV} \\ \frac{1}{\beta}, & \text{falls } U_n < 1 \text{ kV} \end{array} \right.$

$I_k^V = 0$