HöMa3 Übung4 am 4.11.09

Wiederholung

Ebene Gebietsintegrale können wir mit Hilfe von Satz 5.10 berechnen, wenn das Gebiet G von der speziellen Form:

$G = \{(x,y) \in \mathbb{R}^2 | c < y < d, a(y) < x < b(y)\}$

für stetige Funktionen $a,b : [c,d] \rightarrow \mathbb{R}$

Dann gilt für $G \rightarrow \mathbb{R}$ stetig:

$\int \int_G f(x,y) \, dx \, dy = \int_c^d \int_a^{b(y)} f(x,y) \, dx \, dy$

A11) $G = \{(x,y) \in \mathbb{R}^2 | 1 < y < 2, y < x < 4 - y\}$

Berechne : $\int \int_G xy \, dx \, dy = \int_1^2 \int_y^{4-y} xy \, dx \, dy$

$c = 1, d = 2, a(y) = y, b(y) = 4 - y, f(x,y) = xy$ ist stetig

$\int_1^2 \left[\frac{1}{2} y \cdot x^2 \right]_y^{4-y} \, dy = \int_1^2 \left[\frac{1}{2} (4-y)^2 y - \frac{1}{2} y^3 \right] \, dy = \int_1^2 \left[\frac{1}{2} (16 - 8y + y^2) y - \frac{1}{2} y^3 \right] \, dy$

$= \int_1^2 [8y - 4y^2] \, dy = \left[4y^2 - \frac{4}{3} y^3 \right]_1^2 = 4 \cdot 2^2 - \frac{4}{3} \cdot 2^3 - 4 + \frac{4}{3}$

$= 16 - \frac{32}{3} - 4 + \frac{4}{3} = 2 \cdot 2^2 - 4 \cdot \frac{3}{3}$

$= 4 \cdot \frac{2}{3} - 4 + \frac{4}{3} = 2 \cdot \frac{2}{3}$
A12) \(E := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\} \)

Wegen \(\frac{y^2}{b^2} \geq 0 \) ist \(1 \geq \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq \frac{x^2}{a^2} \) also \(x^2 \leq a^2 \Rightarrow |x| \leq a \)

Für festes \(x \) mit \(-a \leq x \leq a \) ist \(\frac{y^2}{b^2} \leq 1 - \frac{x^2}{a^2} \) bzw. \(|y| \leq b \cdot \sqrt{1 - \frac{x^2}{a^2}} \)

Den Flächeninhalt der Ellipse erhalten wir durch:

\[
F_E = \int_{-a}^{a} \int_{y=-b \sqrt{1-\frac{x^2}{a^2}}}^{y=b \sqrt{1-\frac{x^2}{a^2}}} 1 \ dy \ dx
\]

\[
= 2b \cdot \int_{-a}^{a} \sqrt{1 - \frac{x^2}{a^2}} \ dx = \pi b \cdot \int_{-\pi}^{\pi} \sqrt{1 - \sin^2 t} \cdot a \cdot \cos t \ dt
\]

\[
= 2ab \int_{-\pi}^{\pi} \cos^2 t \ dt = 2ab \cdot \int_{-\pi}^{\pi} \frac{1 + \cos^2 t}{2} \ dt = ab \left[t + \frac{1}{2} \sin 2t \right]_{-\pi}^{\pi} = ab \cdot \left(\frac{\pi}{2} + \frac{1}{2} (\sin \pi - \sin (-\pi)) \right) = a \cdot b \cdot \pi
\]
A13) \(F : [0, 1] \to \mathbb{R} \) \(F(x) := \int_{x}^{1} y \cdot \sin \frac{x}{y} \, dy \)

Berechne \(\int_{0}^{1} F(x) \, dx =: I \).

\[
I = \int_{0}^{1} \int_{0}^{x} y \cdot \sin \left(\frac{x}{y} \right) \, dy \, dx = \int_{G} f(x, y) \, dy \, dx
\]

\(f(x, y) = y \cdot \sin \left(\frac{x}{y} \right) \) und

\(G = \{(x, y) \in \mathbb{R} | 0 < x < 1, x < y < 1\} \)

Satz 5.10 ist anwendbar, da \(f(x, y) \) stetig fortsetzbar auf \(G \) ist.

\[
\Rightarrow I = \int_{y=0}^{1} \int_{y=0}^{x} f(x, y) \, dx \, dy
\]

Somit ist die Integrationsreihe-

\[
= \int_{y=0}^{1} \int_{y=0}^{x} y \cdot \sin \left(\frac{x}{y} \right) \, dx \, dy = \int_{y=0}^{1} \left[y \left(-\cos \left(\frac{x}{y} \right) \right) \right]_{0}^{y} \, dy
\]

\[
= -\int_{0}^{1} y^{2} \left(\cos(1) - \cos(0) \right) \, dy = -\left(\cos(1) - 1 \right) \int_{0}^{1} y^{2} \, dy
\]

\[
= \frac{1}{3} \left(1 - \cos(1) \right)
\]
\(A14 \)

\[
E_1 := \{(x, y, z) \in \mathbb{R}^3 \mid z = 1 + x\}
\]
\[
E_2 := \{(x, y, z) \in \mathbb{R}^3 \mid z = -(1 + x)\}
\]
\[
Z_z := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}
\]

Zu Untersuchen gilt der Körper:

\[
K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < 1, -(1 + x) < z < 1 + x\}
\]

\[
x^2 + y^2 < 1 \Leftrightarrow |y| < \sqrt{1 - x^2}, \text{ also:}
\]
\[
-\sqrt{1 - x^2} < y < \sqrt{1 - x^2}
\]

Zusammen:

\[
K = \{(x, y, z) \in \mathbb{R}^3 \mid -1 < x < 1, -\sqrt{1 - x^2} < y < \sqrt{1 - x^2}, -(1 + x) < z < 1 + x\}
\]

\[
V_K = \int_{K} 1 \, dz \, dy \, dx
\]
\[
= \int_{x=-1}^{1} \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{z=-1}^{1+x} 1 \, dz \, dy \, dx
\]
\[
= \int_{x=-1}^{1} \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2 + 2x \, dy \, dx
\]
\[
= \int_{-1}^{1} (2 + 2x) \cdot 2\sqrt{1 - x^2} \, dx
\]
\[
= 4 \cdot \int_{-1}^{1} \sqrt{1 - x^2} dx + 4 \int_{-1}^{1} x \cdot \sqrt{1 - x^2} dx
= 8 \int_{0}^{1} \sqrt{1 - x^2} dx + 4 \cdot \left[-\frac{1}{3} (1 - x^2)^{3/2} \right]_{0}^{1}
\]
\[
x = \sin t, \quad \pi \cdot 0 = \frac{\pi}{2} \cdot \frac{1 + \cos 2t}{2} dt = 4 \cdot \left[t + \frac{1}{2} \sin 2t \right]_{0}^{\pi} = 4 \cdot \left[\frac{\pi}{2} + \frac{\sin \pi}{2} \right] = 2\pi
\]