Die Teilintegration über $d\Phi$ ist trivial:

$$E_z (0, 0, b) = \frac{e}{4\pi \varepsilon_0} \cdot \int_{S_0} \frac{dQ_a}{E^2 + b^2} \cdot \frac{dQ_a}{d\Phi_a}$$

Ausnutzung des Ergebnisses aus Aufg. 4b angewendet auf einen Kreisring mit dem Radius R_a und der Breite $d\Phi_a$.

Annäherung von $d\Phi$ als ringförmige Linienladung mit dem Radius R_a und Ladungsbelag $d\Phi$:

$$d\Phi = \frac{e}{4\pi} \cdot 2\pi R_a \cdot d\Phi_a$$

$$\Rightarrow d\Phi = \frac{e}{4\pi} \cdot d\Phi_a$$

D.h. ersetze im Ergebnis aus Aufg. 4b:

$$E_z (0, 0, b) \quad \text{durch} \quad \frac{dE_z (0, 0, b)}{d\Phi}$$

$$q \quad \text{durch} \quad dQ$$

$$a \quad \text{durch} \quad R_a$$

$$dE_z (0, 0, b) = \frac{dQ}{2\varepsilon_0} \cdot \frac{R_a \cdot b}{E^2 + b^2}$$

c)

$$E_z (0, 0, b) = \frac{e \cdot b}{2\varepsilon_0} \cdot \int_{S_0} \frac{dQ_a}{E^2 + b^2}$$

$$E_z (0, 0, b) = \frac{e \cdot b}{2\varepsilon_0} \cdot \left[-\frac{1}{\left[\frac{g^2 + b^2}{b^2}\right]^{3/2}} \right]_{S_a=0}^{a}$$
\[E(0,0,b) = E_0(0,0,b) \cdot \varepsilon_e \]
\[= \frac{\varepsilon_0 \cdot b}{2e_0} \cdot \left[-\frac{1}{b^3 + b^2} - \frac{1}{b} \right] \cdot \varepsilon_e \]

Fernfeld für \(b >> a \)
\[E(0,0,b) = \frac{\varepsilon_0 \cdot b}{2e_0} \cdot \frac{1}{b} \cdot \left[-\frac{1}{\left(\frac{a^2}{b}\right) + 1} + \varepsilon_e \right] \]

Der Ansatz \(\sqrt{a^2 + b^2} \approx b \) **ist hier zu ungenau**

Hinweis: \(\frac{1}{1 + x} \approx 1 - \frac{1}{2} x \) für \(|x| < 1 \)

\[\frac{1}{1 + x} \approx 1 + \frac{1}{2} x \] für \(|x| < 1 \)

Hinweis: \(\varepsilon_e \approx \frac{\varepsilon_0 \cdot 1}{2e_0} \left[-\left(1 - \frac{1}{2} \left(\frac{a^2}{b}\right) \right) + \varepsilon_e \right] \cdot \varepsilon_e \)

\[\frac{\varepsilon_0 \cdot a^2}{4e_0 \cdot b^2} \cdot \varepsilon_e \]

Formulierung: Mit der Gesamtladung \(Q = \varepsilon_0 \cdot C_0 \cdot T \cdot a^2 \)

\[E(0,0,b) \approx \frac{Q}{4\pi \varepsilon_0} \cdot \frac{1}{b} \cdot \varepsilon_e \] für \(b >> a \)

Aufg. 6

\[\\]

\[a) \quad dQ = S_c \cdot dV = S_c \cdot \pi \cdot a^2 \cdot dz \]

\[= d\sigma_c \cdot \pi \cdot a^2 \]

\[\rightarrow d\sigma_c = S_c \cdot dz \]

Ersetze im Ergebnis aus **Aufg. 5c:**
E(0,0,b) durch dE(0,0,b)
\sigma_e durch d\sigma_e
b durch b-e

Voraussetzung: \(b-z > 0 \)
hier: \(b > c > z \)

\[
dE(0,0,b) = \frac{d\sigma_e \cdot (b-z)}{2 \varepsilon_0} \left[-\frac{1}{\frac{1}{a^2} + \frac{1}{(b-z)^2}} + \frac{1}{b-z} \right] \hat{e}_z
\]
\[
= \frac{1}{b-z}
\]

b)

\[
E(0,0,b) = \int_{z=c}^{c} dE
\]
\[
= \frac{\varepsilon_0}{2 \varepsilon_0} \int_{z=-c}^{c} \left[-\frac{b-z}{\frac{1}{a^2} + \frac{1}{(b-z)^2}} + 1 \right] \hat{e}_z \cdot \hat{e}_z
\]
\[
\sqrt{f(x)}' = \frac{-f(x)}{2+f(x)}
\]

\[
= \frac{\varepsilon_0}{2 \varepsilon_0} \left(\sqrt{\frac{a^2 + (b-z)^2}{a^2 + (b-c)^2}} \right)_{z=-c}^{c} + 2c \hat{e}_z
\]
\[
= \frac{\varepsilon_0}{2 \varepsilon_0} \left(\sqrt{\frac{a^2 + (b-c)^2}{a^2 + (b-c)^2}} - \sqrt{a^2 + (b-c)^2} + 2c \right) \hat{e}_z
\]

(für \(b > c \))

Betrachte \(0 < b < c \)

1. Lösungsaussage:
 Fallunterscheidung für den Integranden:

\[
|b-z| = \begin{cases}
 b-z & \text{falls } b \geq z \\
 z-b & \text{falls } b < z
\end{cases}
\]
2. Lösungsansatz

Breite der Restzylinder:

\[c + b - (c - b) = 2b \]

\[\Rightarrow E = \int_{c}^{b} \frac{dE}{b^2 z} \]

Lösung für \(b = 0 \): Aus symmetrischen Gründen

\[E(0,0,b) = -E(0,0,b) \]

Aufg. 7 wird überprüft.

Aufg. 8

Aus Kugelsymmetrie folgt:

\[E(\theta) = E_r(r, \theta, \phi) \hat{e}_r + E_\theta(r, \theta, \phi) \hat{e}_\theta + E_\phi(r, \theta, \phi) \hat{e}_\phi \]
L-3

\[\vec{E}(r) = E_r(r) \cdot \hat{e}_r \]

Gesucht: \(R(z) \)

Allg. gilt: \(R^2(z) = x^2 + y^2 \)

\[R = \sqrt{x^2 + y^2} \]

und \(R(z) > 0 \)

\[\Rightarrow R(z) = \sqrt{a^2 - z^2} \]

für \(-a < z < a\)

(\(\text{vgl.}\ p \text{ in Zylinderkoordinaten}\))

Kugelgleichung: \(a^2 = x^2 + y^2 + z^2 \)

\[\Rightarrow x^2 + y^2 = a^2 - z^2 \]

\[\Rightarrow R(z) = \sqrt{a^2 - z^2} \]

wie in Aufg. 6: \(d\phi = \frac{\rho}{\rho} \cdot dz \)

b) mit dem Ergebnis aus Aufg. 5c:

\(\vec{E}(0,0,b) \) ersetzt durch \(d\vec{E}(0,0,b) \)

\[\sigma_e \quad d\phi \quad d\rho \]

\[a \quad b \quad R(z) \]

\[d\vec{E} = \frac{\sigma_e \cdot dz}{2 \varepsilon_0} \cdot \left[\frac{b - z}{\sqrt{(\frac{R(z)}{z^2} + (b - z)^2}^2}} \cdot \hat{e}_z \right] \]

\[a^2 - z^2 + b^2 - 2bz + z^2 \]

\[d\vec{E} = \frac{\sigma_e \cdot dz}{2 \varepsilon_0} \cdot \left[\frac{b - z}{a^2 + b^2 - 2bz} \cdot \hat{e}_z \right] \]

c) \(\vec{E}(0,0,b) = \int_{-a}^{a} d\vec{E} = \frac{\sigma_e \cdot \hat{e}_z}{2 \varepsilon_0} \cdot \int_{-a}^{a} \left(\frac{b - z}{\sqrt{a^2 + b^2 - 2bz}} \right) dz \]

HINWEIS

\[= \frac{\sigma_e \cdot \hat{e}_z}{2 \varepsilon_0} \cdot \left[\frac{\sqrt{a^2 + b^2 - 2zb} - \sqrt{a^2 + b^2 - 2za}}{b} \right] \]

\[= \frac{\sigma_e \cdot \hat{e}_z}{2 \varepsilon_0} \cdot \left[2a - \frac{1}{3b} \left(a + \frac{a^2 - 2b^3}{b} \right) \sqrt{a^2 + b^2 - 2za} + \frac{1}{3b} \left(-a + \frac{a^2 - 2b^3}{b} \right) \sqrt{a^2 + b^2 - 2zb} \right] \]

\(|a - b| = b - a \)

\(|a + b| = a + b \)
\[
\begin{align*}
E_z &= \frac{\alpha}{2\varepsilon_0} \left[2\alpha - \frac{1}{3b^2} \cdot \left\{ (a^4 + a^2 - 2b^2)(b-a) - (a+b)(b^3)(a+b) \right\} \right] \\
&= \frac{\alpha}{2\varepsilon_0} \left[2\alpha - \frac{1}{3b^2} \cdot \left\{ 6b^2 - 2b^4 \right\} \right] \\
&= \frac{\alpha}{2\varepsilon_0} \left[2\alpha - 2\alpha + \frac{2a^3}{3b^2} \right] \\
&= \frac{8\varepsilon_0 \alpha}{3} \cdot \frac{a^3}{b^2} \cdot \varepsilon_z
\end{align*}
\]

Mit der Gesamtladung \(Q = \frac{4}{3} \pi \alpha^3 \)

\[E(0,0,b) = \frac{3\varepsilon_0 \alpha^3 \cdot 4\pi}{b^3} \cdot \frac{1}{4\pi \varepsilon_0} \cdot \frac{1}{b^2} \cdot \varepsilon_z \]

eignet sich für \(b > a \) exakt dem Feld einer Punktladung im Ursprung.