

Mengennotierung

\[G2 \quad E = \frac{\$}{\€} = \frac{p^\text{world}}{p} \]

Preis unwirkung

\[\text{Preis der ausl. W. in Einh. der incl. W.} \]

\[IMF \quad E = \frac{\€}{\$} = \frac{p}{p^\text{world}} \]

A1 a) \[E = 1,05 \frac{\$}{\€} \]

Nominaler Zinssatz entspricht Effektivzinsengliederung

\[i = \frac{NW_{t+1} - NW_t}{NW_t} \quad NW_{t+1} = \frac{NW}{NW_t} \]

\[i = \frac{NW - NW_t}{NW_t} \]

Zinssatz für USA (Ausland)

\[i = \frac{13333 \text{ $} - 12698,10 \text{ $}}{12698,10 \text{ $}} = 0,05 = 5\% \]

Zinssatz für Deutschland (Inland)

\[i = \frac{10000 \text{ €} - 9615,38 \text{ €}}{9615,38 \text{ €}} = 4\% \]
(1) \((1 + i_t) = \left(1 + i_t^w\right) \frac{E_t}{E_{t+1}}\)

Einsparität: Zinsen weltweit gleichen sich in Abhängigkeit von den nominalen Wechselkursen an. (Über das Anlageverhalten der Investoren)

Ungedeckte Einsparität \(\Rightarrow E_{t+1}^e\) unsicher!

\[
1.04 = 1.05 - \frac{1.05}{E_{t+1}^e}
\]

\((\text{in Euroraum}) - \text{in } \$, Raum)}

\(\Leftrightarrow E_{t+1}^e = 1.06 \Rightarrow \text{Bs muss mit einer Aufwertung der Inlandswährung gerechnet werden}

\(\Rightarrow \text{wäre } E_{t+1}^e \text{ unverändert geblieben, wäre eine Anlage in den USA und eine anschließende Währungsumtausch in } \$\)

\(\text{kohäns verh. weniger als eine Anlage in } \€\). Der amerikanische Markt mit Geld geflutet würde, wodurch Camp Freistig der Zinsinteresse sich

\(\text{Bsp.: } (€) 1000 \€ \Rightarrow 1050 \$ \quad (E_t = 1.05 - \frac{1}{E_t}) \quad | \quad \text{inv. in } \€-\text{land}

1000 \€ \Rightarrow 1040 \€ \quad (i = 4\% \quad E_t = E_{t+1})

1050 \$ \Rightarrow 1102,50 \€ \quad (i = 6\% \quad E_t = E_{t+1}) \quad | \quad \text{USA}
alternative:

\[(1') \quad \ln (1 + i_t^e) = \ln (1 + i_t^w) + \ln (E_t^e) - \ln (E_{t+1}^e) \]

\[(1''') \quad \ln (1 + i_t^e) = \ln (1 + i_t^w) - (\ln (E_{t+1}^e) - \ln (E_t^e)) \]

\[(2) \quad i_t^e \propto i_t^w - \frac{E_{t+1}^e - E_t^e}{E_t^e} \]

\[\begin{tikzpicture}
 \draw[->] (0,0) -- (2,0) node[anchor=north] {x};
 \draw[->] (0,0) -- (0,2) node[anchor=east] {y};
 \draw[->] (0,0) -- (1,1) node[anchor=north west] {\(\ln \)};
 \draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
 \node at (1,0) {x};
 \node at (0,1) {y};
 \draw (0,0) -- (0,1) node[anchor=south] {45°};
\end{tikzpicture} \]

c) Dollar sinkt zum Euro ab

\[E = \frac{\$}{\€} \uparrow \text{Man bekommt mehr \$ pro \€} \]

Erwartete USD Abwertung > 1%
\[\Rightarrow \text{Rendite der deutschen Täfelie ist größer} \]
Erwartete USD Abwertung < 1%
\[\Rightarrow \text{Rendite der US - Täfelie ist größer} \]

\[\Rightarrow \text{Es würde zu einem "Run" auf die Täfelie mit der höheren Rendite kommen, wodurch die Zinsen sinken und sich ein neues Gleichgewicht einstellt.} \]
a) Keine Transports- Informations- oder Opportunitätskosten, Geschäfte durch Arbitrage gemacht.

\[180 \text{ \$} \overset{1,8}{=} \frac{180 \text{ \$}}{1,8 \text{ \$}} = 100 \text{ \€} \]

\[\Rightarrow \text{ Kauf von Weizen in Europa zu 50\€ und Verkauf in den USA zu 100\€ bringt 50\€ Gewinn pro Tonne Weizen} \]

b) Behalten genug Händler dieses Geschäft so steigen langfristig die Weizenpreise in der EU und sinken die Preise in den USA.

\[\Rightarrow \text{Tendentielle Erhöhung der Weltweiten Weizenpreise} \]

c) Auswirkung auf reale Wechselkurs E

\[E \text{ in Ausgangssituation: } E = E \cdot \frac{p}{p^w} = \frac{180 \text{ \€}}{180 \text{ \$}} \cdot \frac{50 \text{ \€}}{180 \text{ \$}} = 0,5 \]

\[p^{\uparrow} \text{ und } p^w^{\uparrow} \text{ durch Arbitrage geschärft} \]

1. E würde steigen, weil der Euro aufwärts (\(\Rightarrow\) Nachfrage nach Währung exportierender Länder steigt)

2. $p^{\uparrow} p^w^{\downarrow} \Rightarrow$ Beides passiert solange bis $E = 1$

\[\Rightarrow \text{dann herrscht absolute Kaufkraft parität (law of one price)} \]

\[E = E \cdot \frac{p}{p^w} = 1 \]
Absolute UIP (Law of one price)
oder PPP (Purchasing Power Parity)

einwände gegen UIP (absolute)
- Es existieren nicht handelbare Güter
- Lokal unterschiedliche Faktoren
- Transaktionskosten
- Qualitätsunterschiede ähnlicher Produkte

\Rightarrow in der Realität ist $\varepsilon \neq 1$

d) Relative Kaufkraftparität

$\varepsilon = \frac{E}{P} \cdot \frac{P}{P_w} = \text{konstant}$

Für die Veränderung räumen gilt:

$\frac{\dot{\varepsilon}}{\varepsilon} = \frac{\dot{E}}{E} + \frac{\dot{P}}{P} - \frac{\dot{P}}{P_w} \cdot \frac{P}{P_w}$

ist ε konstant, gilt:

$\frac{\dot{\varepsilon}}{\varepsilon} = \frac{\dot{P}}{P} \cdot \frac{P}{P_w}$

ist Inflationsrate

Veränderung des nominellen Wechselkurses kann auf unterschiedliche Inflationsentwicklungen in beiden Ländern zurückgeführt werden.
Euroland: $E_{PPP} = \frac{3.54 \$}{3.42 \text{€}} = 1.035 \frac{\text{€}}{\$}$

$E_{fals.} = 1.28 \frac{\text{€}}{\$}$

$E_{fals.} - E_{PPP} = \frac{1.28 - 1.035}{1.035} = 0.23$

Der Euro ist 24% überbewertet.

China: $E_{PPP} = \frac{3.54 \$}{12.54 \text{Yuan}} = 0.28 \frac{\$}{\text{Yuan}}$

$E_{fals.} = 0.73 \frac{\$}{\text{Yuan}}$

$E_{fals.} - E_{PPP} = \frac{0.73 - 0.28}{0.28} = -0.54$

Der Yuan ist 54% unterbewertet.

b) Nationale Preisindizes werden auf internationale Standards angepasst, um so auf Aussagen zur Bewertung von Wechselkursen zu kommen.

⇒ wird kritisch gesehen, Methode ist unvollständig